www.maxgeometricmaths.co.in

DIWALI BUMPER PRIZE - II PRIZE (Rs.3000) WINNER - Mr. Hara Gopal's Solution

Given :

$A B>A O$
$B C=C D$;
$\mathrm{BM}=\mathrm{MD} \& \angle C E B=90^{\circ}$
TP:
$\mathrm{AC}=\frac{E M \times M G}{C N}$

Solution:

In $\triangle B C D ; \mathrm{BC}=\mathrm{CD}$ and ' M ' is the midpoint of $\mathrm{BD} \Rightarrow \angle M=90^{\circ} \quad$ [Isosceles Δ properties]
For $\triangle A B D ; C$ is a point on circumcircle and $C E, C M$ are perpendicular to the 2 sides $A B \& B D$ then according to 'Simson line' property $\mathrm{CG} \perp$ side $\mathrm{AD} \Rightarrow \angle C G A=90^{\circ}$

Now, as quadrilateral CMEB is cyclic [$\because \angle E=\angle M=90^{\circ}$]
$\angle B C E=\angle B M E=\alpha \quad$ [Same segment angles]
$\angle B M E=\angle G M D=\alpha$ [V.O.A]
$\angle G M D=\angle G C D=\alpha\left[\because\right.$ Quadrilateral CMDG is also cyclic as $\left.\angle M=\angle G=90^{\circ}\right]$
Now, consider \triangle CBE \& $\triangle C G D$
$\angle E=\angle G=90^{\circ}$ [Proved]
$\angle C B E=\angle C D G$ [Exterior angle property of cyclic quadrilateral]
$C B=C D$ (given)
$\therefore \triangle C B E \cong \triangle C D G$ [AAS congruency]
$\therefore C E=C G[C P C T]$
In cyclic quadrilateral $A B C D$ as $B C=C D$ (given)
By isosceles triangle property and same segment angles property, we can prove that
$\angle C A B=\angle C A D=\beta$ [let us assume]
Now, In $\triangle C E A \& \triangle C G A$
$\angle C A B=\angle C A D[$ from $-(2)]$
$\angle E=\angle G=90$ [Proved)
$C E=C G \quad[f r o m ~----(1)$
$\therefore \triangle C E A \cong \triangle C G A$ [AAS congruency]
$\therefore \mathrm{AE}=\mathrm{AG}$ [CPCT]
So quadrilateral AECG is a kite $[\because C G=C E \& A G=A E]$
and cyclic also $[\because \angle E=\angle G=90]$ sum $=180$
Now, consider $\triangle A N E \& \triangle G N C$
As $\angle C A E=\angle C G E \&$
$\angle G E A=\angle G C A$ [same segment angles are equal]
$\therefore \triangle \mathrm{ANE} \sim \Delta G N C$ [AA similarity]
$\frac{A N}{G N}=\frac{N E}{N C} \quad$ [Proportionality of sides]
AN $\times N C=E N \times N G$
$(\mathrm{AO}+\mathrm{ON}) \mathrm{CN}=(\mathrm{EM}+\mathrm{MN})(\mathrm{MG}-\mathrm{MN})$

$$
\begin{aligned}
\mathrm{AO} \times \mathrm{CN}+\mathrm{ONxCN} & =\mathrm{EM} \times \mathrm{MG}-\mathrm{EM} \times \mathrm{MN}+\mathrm{MG} \times \mathrm{MN}-M N^{2} \\
& =\mathrm{EM} \times \mathrm{MG}-\mathrm{EM} \times \mathrm{MN}+(\mathrm{MN}+\mathrm{NG}) \mathrm{MN}-M N^{2} \\
& =\mathrm{EM} \times M G-\mathrm{EM} \times \mathrm{MN}+M N^{2}+\mathrm{NG} \times \mathrm{MN}-M N^{2} \\
& =\mathrm{EM} \times \mathrm{MC}+\mathrm{MN}(-\mathrm{EM}+\mathrm{NG}) \\
& =\mathrm{EM} \times M G+\mathrm{MN}(-\mathrm{EM}+\mathrm{EN})[\because \mathrm{NG}=\mathrm{EN} \text { As AECG is a kite }] \\
& =\mathrm{EM} \times M G+\mathrm{MN}(\mathrm{MN}) \\
& =\mathrm{EM} \times M G+M N^{2}
\end{aligned}
$$

Here, $\operatorname{In} \triangle C M O, \angle M=90^{\circ} \& \angle N=90^{\circ}$ [As Diagonals meet at 90° in a kite] So by Mean Proportional Theorem,

$$
\begin{aligned}
& M N^{2}=O N \times N C \\
& =E M \times M G+O N \times N C \\
& \therefore A O x C N+O N x C N=E M x M G+O N x C N \\
& \therefore \mathrm{AOxCN}=E M x M G \\
& \Rightarrow A O=\frac{E M \times M G}{C N}----------------- \text { Hence Proved }
\end{aligned}
$$

