www.maxgeometricmaths.co.in

DIWALI BUMPER PRIZE - II PRIZE (Rs.3000) WINNER - Mr. Hara Gopal's Solution

Given:

AB > AO

BC=CD;

BM=MD & $\angle CEB = 90^{\circ}$

TP:

$$AC = \frac{EM \times MG}{CN}$$

Solution:

In \triangle BCD; BC=CD and 'M' is the midpoint of BD $\Rightarrow \angle M = 90^{\circ}$ [Isosceles \triangle properties]

For \triangle ABD; C is a point on circumcircle and CE, CM are perpendicular to the 2 sides AB & BD then according to 'Simson line' property CG \perp side AD $\Rightarrow \angle CGA = 90^{\circ}$

Now, as quadrilateral CMEB is cyclic [$\because \angle E = \angle M = 90^{\circ}$]

$$\angle BCE = \angle BME = \alpha$$
 [Same segment angles]

$$\angle BME = \angle GMD = \alpha$$
 [V.O.A]

 $\angle GMD = \angle GCD = \alpha$ [: Quadrilateral CMDG is also cyclic as $\angle M = \angle G = 90^{\circ}$]

Now, consider $\triangle CBE \& \triangle CGD$

$$\angle E = \angle G = 90^{\circ}$$
 [Proved]

 $\angle CBE = \angle CDG$ [Exterior angle property of cyclic quadrilateral]

CB=CD (given)

$$\therefore \Delta CBE \cong \Delta CDG$$
 [AAS congruency]

$$\therefore CE = CG [CPCT] -----(1)$$

In cyclic quadrilateral ABCD as BC = CD (given)

By isosceles triangle property and same segment angles property, we can prove that

$$\angle CAB = \angle CAD = \beta$$
 [let us assume] ----- (2)

Now, In $\triangle CEA \& \triangle CGA$

$$\angle CAB = \angle CAD$$
 [from—(2)]

$$\angle E = \angle G = 90$$
 [Proved)

 $\therefore \Delta CEA \cong \Delta CGA$ [AAS congruency]

So quadrilateral AECG is a kite $[\because CG = CE \& AG = AE]$

and cyclic also $[\because \angle E = \angle G = 90]$ sum = 180

Now, consider Δ *ANE* & Δ *GNC*

As $\angle CAE = \angle CGE \&$

 $\angle GEA = \angle GCA$ [same segment angles are equal]

 $\therefore \Delta$ ANE $\sim \Delta$ *GNC* [AA similarity]

 $\frac{AN}{GN} = \frac{NE}{NC}$ [Proportionality of sides]

 $AN \times NC = EN \times NG$

(AO+ON)CN = (EM+MN) (MG-MN)

 $AOxCN + ONxCN = EMxMG - EMxMN + MGxMN - MN^2$

= EM x MG – EM x MN + (MN+NG) MN - MN^2

= EM x MG – EM x MN + MN^2 + NGxMN- MN^2

 $= EM \times MC + MN (-EM+NG)$

= EM x MG + MN (-EM+EN) [: NG=EN As AECG is a kite]

 $= EM \times MG + MN (MN)$

 $= EM \times MG + MN^2$

Here, In $\triangle CMO$, $\angle M = 90^{\circ} \& \angle N = 90^{\circ}$ [As Diagonals meet at 90° in a kite]

So by Mean Proportional Theorem,

$$MN^2 = ON \times NC$$

= EM x MG + ON x NC

∴AOxCN + ONxCN = EMxMG + ONxCN

∴ AOxCN =EMxMG

$$\Rightarrow AO = \frac{EM \times MG}{CN}$$
------Hence Proved
