www.maxgeometricmaths.co.in

DIWALI BUMPER PRIZE Rs. 5000 WINNER - Mrs. Madhumitha's Solution

Given:

ABCD is cyclic quadrilateral

 $CB = CD \Rightarrow BCD$ is isosceles triangle.

 $\Delta CDB = \Delta CBD \quad ----- (1)$

As *M* is midpoint of $D \Rightarrow CM$ Median and

 $\angle CMB = 90^\circ = \angle CEB$ (given CE \perp AB)

 \Rightarrow EMCB is cyclic quadrilateral

As ABCD is cyclic quadrilateral

 $\angle BAC = \angle BDC = \angle DBC = \angle CAD = \alpha$ (let) (by (1)

 \Rightarrow AC is angle bisector of $\square DAB$

 $\frac{AD}{AE} = \frac{DO}{OB} \quad \text{------(2)}$

As EMCB is cyclic quadrilateral = $\square MEC = \square MBC = \alpha$

 $\angle AEG = 180^{\circ} - (90^{\circ} - \alpha + 2\alpha) = (90^{\circ} - \alpha)$ ------(a)

 $\Rightarrow \Delta AGE$ is isosceles $\Rightarrow AE = AG$ ------(3)

 $\frac{AG}{AE} = \frac{GN}{NE} \Rightarrow N \text{ is midpoint GE}$

⇒AN is both median & Altitude

 $\Rightarrow \angle ANG = 90^{\circ}$

In $\triangle ACE$, $\angle ACE = 90^{\circ} - \alpha = \angle AGE$ ---- (by (a)

 \Rightarrow AECG is cyclic Quadrilateral

[AC& EG bisect at right angle and AG=AE \Rightarrow AECG is kite \Rightarrow CG = CE]

In $\triangle BAD$, EG is transversal

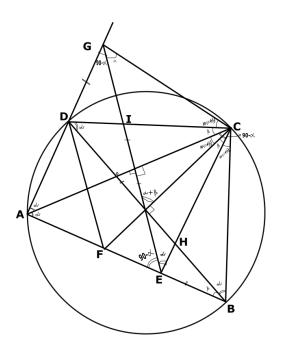
 $\frac{BE}{EA} \times \frac{AG}{GD} \times \frac{DM}{MB} = 1$ (*M* is midpoint DM = MB) (ΔAGE is isosceles AG=AE)

 $\Rightarrow BE = GD -----(4)$

Also BC = CD (Given) & CE= CG (As AECG is kite)

 $\Rightarrow \Delta CGE \cong \Delta CEB$ (By SSS Congruency)

 $\Rightarrow \angle AGC = 90^{\circ}$



As AECG is cyclic quadrilateral by Ptolemy's Theorem

$$(AE \times GC) + (AG \times EC) = AC \times EG \quad -----(5)$$

As AE=AG & GC=CE

 $2(AE \times CE) = AC \times EG$ (6)

Also EN $\times NG = AN \times NC$

(EM+MN) $(MG-MN) = (AN \times NC)$

 $(EM \times MG) + (MN \times MG) - (EM \times MN) - MN^2 = AN \times NC$

 $(EM \times MG) + MN \times [MN+NG] - (EN-NM] \times MN - MN^2 = AN \times NC$

As EN = NG (As N is midpoint EG)

 $(EMx MG) + MN \times (MN+NG) - (GN-NM) \times MN - MN^2 = AN \times NC$

EMX MG +
$$MN^2$$
+MN XNG – NG X MN + MN^2 - MN^2 AN X NC

 $EM \times MG + MN^2 = AN \times NC$ -----(7)

$$\frac{EM \times MG}{CN} = AN - \frac{MN^2}{CN}$$

T.P.T $AN - \frac{MN^2}{CN} = AO$
AO = AN - ON
=AN - $\sqrt{OM^2 - NM^2}$ (Δ OMN) ------ 1
 $\therefore \Delta NCM \sim \Delta MCO$ (by AA axiom)
 $\frac{NC}{MC} = \frac{CM}{CO} = \frac{NM}{MO} \Rightarrow OM = \frac{NM \times MC}{NC}$
I-- becomes
AO = AN - $\sqrt{\frac{MN^2 \times MC^2}{NC^2}} - MN^2$
= AN - $\sqrt{\frac{MN^2[MC^2 - NC^2]}{NC^2}}$
= AN - $\frac{MN}{NC} \sqrt{MC^2 - NC^2}$
= AN - $\frac{MN}{NC} \sqrt{MN^2}$
= AN - $\frac{MN}{NC} \sqrt{MN^2}$
= AN - $\frac{MN^2}{NC}$ ------- Hence Proved