Solution

Join CM \& CG. For $\triangle A B D, C$ is a point on its circumcircle.
\therefore EMG is its Simpson line.
$\therefore \mathrm{CG} \perp A D$
$\mathrm{BC}=\mathrm{CD}$ (Given)
$\therefore \angle B A C=\angle C A D=x$ (say)
$\therefore \angle C B D=\angle C D B=x$
$\angle D C A=\angle D B A=z(s a y) \quad(\because$ Angles in the same segment $)$
$C B=C D$ and M is the midpoint of BD.
$\therefore \angle C M B=90^{\circ}$
$\therefore \angle C M B=\angle C E B=90^{\circ}$
$\therefore B C M E$ is concyclic. $\therefore \angle C E M=x$
Similarly $\angle \mathrm{CMD}+\angle C G D=180^{\circ}$
$\therefore C M D G$ is concyclic. $\therefore \angle C G M=x$.
$\therefore \angle B C E=\angle B M E=y(s a y)$
$\therefore \angle D M G=\angle D C G=y$
Now AC is angle bisector.
\therefore The perpendicular lines from ' C ' to $\mathrm{AD} \& \mathrm{AB}$ (ie $\mathrm{CE} \& \mathrm{CG}$) are equal.
Now see the picture
$A O \times O C=B O \times O D$
$A O=\frac{B O \times O D}{O C}$
$\triangle C N M \sim \Delta C G D$
$\frac{C N}{C G}=\frac{C M}{C D}$
$C N=\frac{C G \times C M}{C D}$
$\triangle M C G \sim \triangle O C B$

$\frac{M G}{O B}=\frac{C G}{B C}$
$M G=\frac{O B \times C G}{B C}$
$\triangle E C M \sim \triangle D C O$

$$
\begin{align*}
& \frac{C M}{C O}=\frac{E M}{D O} \\
& E M=\frac{C M \times D O}{C O} \tag{4}\\
& \frac{(4) \times(3)}{(2)} \rightarrow \frac{E M \times M G}{C N}=\frac{C M \times D O}{C O} \times \frac{O B \times C / G}{B / C} \times \frac{C D}{\not C G \times C / M} \quad(\because B C=C D) \\
& \text { ie } \frac{E M \times M G}{C N}=\frac{O B \times O D}{O C} \tag{5}\\
& \text { (1) }+(5) \rightarrow
\end{align*}
$$

