III CASH PRIZE WINNER Mrs.Ponmalar Selvi's Solution

Solution:

 $\angle OEC + \angle ODC = 180^{\circ}$

: ODCE is concyclic

Let $\angle ECD = \alpha$

 $\angle BOD = \alpha$ (Exterior angle is equal to interior opposite angle)

 $\angle AOE = \angle BOD = \alpha$ (vertically opposite angles)

$$\angle DBO = \angle OAE = \beta$$
 (Say)

∴ ABDE is concyclic

Let $\angle ABE = \angle ADE = \gamma$

 $\angle EDC = 90^{\circ} - \gamma$

 $\mbox{CE} \perp \mbox{OF}$ and bisect of

 ΔOCF is an isosceles triangle

OC = CF

 $\angle COF = \angle CFO$ (Angles opposite to equal sides are equal)

 $\angle ODE = \angle OCE = \gamma$ (Angles in the same segment)

 $\angle COE = 90^\circ - \gamma$

 $\angle CFE = \angle COE = 90^{\circ} - \gamma$

Consider \triangle *BCF* $\& \triangle$ *DCG* $\angle C$ is common

and $\angle BFC = \angle CDG = 90^{\circ} - \gamma$

 $\therefore \Delta BCF \sim \Delta GCD$ (by AA similarity)

 \therefore Corresponding sides are proportional.

$$\frac{BC}{GC} = \frac{FC}{DC}$$
