III CASH PRIZE WINNER Mrs.Ponmalar Selvi's Solution

In the adjoining picture,
$\mathrm{AD} \& \mathrm{BE}$ are altitudes of $\triangle \mathrm{ABC}$ and O is the orthocentre.
F is a point on BE produced
 such that $\mathrm{OE}=\mathrm{EF} . \mathrm{DE}$ \&
CF meet at G. Prove: $\frac{B C}{G C}=\frac{F C}{D C}$.

Solution:

$\angle O E C+\angle O D C=180^{\circ}$
$\therefore O D C E$ is concyclic
Let $\angle E C D=\alpha$
$\angle B O D=\alpha$ (Exterior angle is equal to interior opposite angle)
$\angle A O E=\angle B O D=\alpha$ (vertically opposite angles)
$\angle D B O=\angle O A E=\beta$ (Say)

$\therefore A B D E$ is concyclic
Let $\angle A B E=\angle A D E=\gamma$
$\angle E D C=90^{\circ}-\gamma$
$\mathrm{CE} \perp \mathrm{OF}$ and bisect of
$\triangle O C F$ is an isosceles triangle
$O C=C F$
$\angle C O F=\angle C F O$ (Angles opposite to equal sides are equal)
$\angle O D E=\angle O C E=\gamma$ (Angles in the same segment)
$\angle C O E=90^{\circ}-\gamma$
$\angle C F E=\angle C O E=90^{\circ}-\gamma$

Consider $\triangle B C F \& \triangle D C G \angle C$ is common
and $\angle B F C=\angle C D G=90^{\circ}-\gamma$
$\therefore \triangle B C F \sim \triangle G C D$ (by AA similarity)
\therefore Corresponding sides are proportional.
$\frac{B C}{G C}=\frac{F C}{D C}$

