Given

ABC is a triangle. Join OC \& AF
$\angle B D A=\angle B E A=90^{\circ}$
$\Rightarrow A B D E$ is cyclic
Let $\angle A B E=\angle A D E=x \Rightarrow \angle E D C=90^{\circ}-x$
$\angle B A D=\angle \mathrm{BED}=\mathrm{y}$
$\Rightarrow \angle E B D=\angle D A E=90-(x+y)$

As ' O ' is orthocentre $\angle O C B=y$ [CO extended to meet AB at H CH is altitude]
And $\angle D C A=x+y, \angle O C A=x$
As $\mathrm{OE}=\mathrm{EF} \& \mathrm{AE}$ is common
$\angle A E O=\angle A E F=90^{\circ}$
$\triangle A E O \cong \triangle A E F \quad$ (by SAS congruecny)
$\Rightarrow \angle O A E=\angle E A F=90-(x+y)$
$\angle A O E=\angle A F E=x+y$
$\angle A O E=\angle A F E=x+y$
$\angle A F B=\angle A F E=x+y \Rightarrow \mathrm{ABCF}$ is cyclic quadrilateral
similarly EC is common, $\mathrm{EC}=\mathrm{EF}$
$\angle O E C=\angle C E F=90^{\circ}$
$\triangle O E C \cong \triangle F E C \quad$ (by SAS congruency)
$\angle O C A=x=\angle E C F$
consider $\triangle B F C \& \triangle D C G$
$\angle B C F=\angle D C G \&($ common $)$
$\angle B F C=\angle G D C=90-x$
By AA axiom
$\triangle B F C \sim \Delta G D C$
$\Rightarrow \frac{B F}{G D}=\frac{F C}{D C}=\frac{B C}{G C}$

