I CASH PRIZE WINNER Master.H.Karthikeya's SOLUTION

Given:

$\mathrm{OE}=\mathrm{EF}, \angle \mathrm{D}=90^{\circ}=\angle \mathrm{E}$
T.P:
$\frac{B C}{G C}=\frac{F C}{D C}$
Construction:

Draw CH perpendicular to AB .

Proof:

In $\triangle \mathrm{AOE} \& \triangle \mathrm{BOD}$,
$\angle A O E=\angle B O D$ (Vertically Opposite Angles)
$\angle \mathrm{OED}=\angle B \mathrm{DO}=90^{\circ}$
$\triangle \mathrm{AOE} \sim \triangle \mathrm{BOD}$ (AA Similarity)
So, $\angle A=\angle B$
In \triangle CEO \& $\triangle C E F$,
$\angle \mathrm{E}=\angle E=90^{\circ}$
CE=CE (Common side)
$\mathrm{OE}=\mathrm{EF}$ (Given)
$\Delta \mathrm{CEO} \cong \triangle C E F$ (SAS similarity)
So, $\angle \mathrm{OCE}=\angle F C E$
In ODCE quadrilateral,
As $\angle \mathrm{D}+\angle \mathrm{E}=90^{\circ}+90^{\circ}=180^{\circ}$
This is a cyclic quadrilateral.
So, $\angle E C O=\angle E D O$ (Same segment angles)

In $\triangle \mathrm{ADE} \& \triangle \mathrm{ACO}$,
$\angle A E D=\angle A O C$
$\angle A E D=\angle G E C$ (Vertically opposite angles)
$\angle A O C=\angle G E C$
In $\triangle \mathrm{AOC} \& \Delta \mathrm{GEC}$

As $\angle \mathrm{AOC}=\angle \mathrm{GEC}$
$\angle O C A=\angle E C G$
$\Delta \mathrm{AOC} \sim \Delta \mathrm{GEC}(\mathrm{AA}$ similarity)
$\angle A=\angle G$
Hence, $\angle B=\angle G$
In $\triangle B C F \& \Delta G C D$
$\angle B=\angle G$
$\angle C=\angle C$
$\triangle B C F \sim \triangle \mathrm{GCD}(\mathrm{AA}$ similarity)
$\Rightarrow \frac{B C}{G C}=\frac{F C}{D C}$---- Hence proved.

