Author's Solution

All the prize winners have solved the problem almost in a similar way. But, the author has, as usual, solved it in a different way. Yes, he displays his own distinct and peculiar style in coining out the solution. It is quite interesting to see how he solves the problem using just the concept of Brahmaguptha Theorem and Simpson line.

- Site Administrator

SOLUTION

Given :

In $\triangle A B C, \mathrm{AD} \& \mathrm{BE}$ are altitudes and ' 0 ' is the Orthocentre. ' F ' is a point on BE produced such that $\mathrm{OE}=\mathrm{EF}$. $\mathrm{DE} \& \mathrm{CF}$ meet at G . To prove $\frac{\mathrm{BC}}{\mathrm{GC}}=\frac{\mathrm{FC}}{\mathrm{DC}}$.

Solution:

Construction :
Join AF \& AG. Draw EL \perp BC
and produce LE to meet AF at P.
Proof:
PL \| AD and $\mathrm{OE}=\mathrm{EF}$

$\therefore \mathrm{AP}=\mathrm{PF}$
(1) $[\because$ In $\triangle \mathrm{AOF}, \mathrm{PE} \| A O]$

Now, ABCF is a quadrilateral with diagonals BF \& AC perpendicular to each other at E. The line perpendicular to side BC through E bisects the side AF.
\therefore As per the converse of Brahmagupta's Theorem,
ABCF is concyclic.
$\therefore \angle C A F=\angle C B F$

Since ABCF is concyclic, A is a point on the circumcircle of $\triangle B C F$ and $A D$ \& $A E$ are perpendiculars drawn from A to its sides $\mathrm{BC} \& \mathrm{BF}$ respectively and therefore, DEG is its Simpson line (Pedal line) and hence $\mathrm{AG} \perp \mathrm{CF}$ (Produced).
$\therefore A E F G$ is concyclic $\& \angle E G F=\angle E A F$
$(2) \&(3) \rightarrow \angle D G F=\angle D B F$
$\Rightarrow G B D F$ is concyclic
$\Rightarrow G F \& B D$ are chords intersecting outside the circle at C .
$\therefore \mathrm{BC} \mathrm{x} \mathrm{CD}=\mathrm{GC} \mathrm{x} \mathrm{CF}$
$\Rightarrow \frac{B C}{G C}=\frac{C F}{C D}$----------------- Proved

