Trigonometric Solution

As a Geometrician, I didn't approve of trigonometric solutions for Geometric problems. But it's academically interesting to develop/study trigonometric solutions confirming Geometric results. For this problem also, I developed a Trigonometric Solution which I am happy to share here.

- Author

Question:

$A B C D$ is a quadrilateral with $B C=C D$ and $A B>A D$. The diagonal $A C$ is also the internal bisector of $\angle B A D$. CE is drawn perpendicular to AB . M is the midpoint of BD . EM is joined and produced to meet CD at F .

Prove that $\mathrm{BM}=\frac{\mathrm{CExFM}}{\mathrm{FC}}$

C

Solution: 2

$\ln \Delta \mathrm{ABC}$,
$\frac{B C}{\sin x}=\frac{A C}{\sin \angle \mathrm{ABC}}$
In $\triangle \mathrm{ADC}, \frac{C D}{\sin x}=\frac{A C}{\sin A D C}$

$$
\mathrm{BC}=\mathrm{CD} \text { (given) }
$$

(1), (2) \& (3) $\rightarrow \sin \angle \mathrm{ABC}=\sin \angle \mathrm{ADC}$

$$
\therefore \angle \mathrm{ABC}=\angle \mathrm{ADC} \text { (or) }=180-\angle \mathrm{ADC}
$$

If $\angle \mathrm{ABC}=\angle \mathrm{ADC}$, then $\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC} \& \mathrm{AB}=\mathrm{AD}$
But it is given that $A B>A D$
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ADC}$ is inapplicable.
$\therefore \angle \mathrm{ABC}=180-\angle \mathrm{ADC}$
$\therefore \mathrm{ABCD}$ is concyclic.
Now join CM.
Let $\angle \mathrm{BAC}=\angle \mathrm{DAC}=x$
Let $\angle \mathrm{ABD}=\mathrm{y}$
$\therefore \angle \mathrm{ACD}=\mathrm{y}$
$\therefore \angle \mathrm{CBD}=\angle \mathrm{CDB}=x$
$\angle \mathrm{CBE}=(x+y)$
$\angle \mathrm{CMB}=\angle \mathrm{CMD}=90^{\circ}$
$\angle \mathrm{CEB}=90^{\circ}$ (given)
$\therefore E B C M$ is concyclic.
$\angle E B M=\angle E C M=y$
$\angle \mathrm{EBC}=\angle \mathrm{FMC}=(x+y)$
$\angle A O D=(x+y)=\angle M O C$
(7) \& (8) $\rightarrow \Delta$ CBE $\sim \Delta$ COM
$\therefore \angle \mathrm{MCO}=\angle \mathrm{ECB}=\mathrm{z}$ (say)
$\angle \mathrm{MCF}=(z+y)$
$\therefore \ln \triangle \mathrm{MCF}$,
$\frac{M F}{F C}=\frac{\sin (z+y)}{\sin (x+y)}$
In $\triangle \mathrm{BCM}, \sin (z+y)=\frac{B M}{B C}$
In $\triangle \mathrm{BCE}, \sin (x+y)=\frac{C E}{B C}$
(11), (12) \& (13) $\rightarrow \frac{M F}{F C}=\frac{B M}{C E}$
$\Rightarrow B M=C E \times \frac{M F}{F C}$ proved.

