

Given:- In $\triangle A B C, D, E$ and F are base points on sides $B C, A C$ and $A B$ respectively such that AD, BE and CF (Cevians) are concurrent at O. FE and AD intersect at G; FD and BE at H; and DE and CF at I.

To prove:

$$
\frac{A G}{G O}=\frac{A D}{D O} ; \frac{B H}{H O}=\frac{B E}{E O} ; \text { and } \frac{C I}{I O}=\frac{C F}{F O}
$$

Proof:
For $\triangle \mathrm{AOC}, \mathrm{EGF}$ is a transversal cutting the sides AC, AO and CO at E, G and F respectively.

\therefore as per Menelaus Theorem,

$$
\begin{equation*}
\frac{C E}{E A} \times \frac{A G}{G O} \times \frac{O F}{F C}=1- \tag{1}
\end{equation*}
$$

For $\triangle A O E, C D B$ is a transversal cutting its sides $A E, A O \& O E$ at C, D and B respectively.

\therefore As per Menelaus Theorem,

$$
\begin{gather*}
\frac{A C}{C E} \times \frac{E B}{B O} \times \frac{O D}{D A}=1 \cdots \\
\frac{C E}{E A} \times \frac{A G}{G O} \times \frac{O F}{F C} \times \frac{A C}{C E} \times \frac{E B}{B O} \times \frac{O D}{D A}=1 \\
\text { ie }\left(\frac{A G}{G O} \times \frac{O D}{D A}\right)=\left(\frac{E A}{A C} \times \frac{C F}{F O} \times \frac{O B}{B E}\right)
\end{gather*}
$$

For $\triangle \mathrm{COE}, \mathrm{BFA}$ is a transversal cutting its sides EO, CO and CE at $\mathrm{B}, \mathrm{F} \& \mathrm{~A}$ respectively.

\therefore As per Menelaus Theorem,

$$
\begin{aligned}
& \frac{A G}{G O} \times \frac{O D}{D A}=1 \\
& \text { ie } \frac{A G}{G O}=\frac{A D}{D O}
\end{aligned}
$$

Similarly,
We can prove

$$
\begin{aligned}
& \frac{B H}{H O}=\frac{B E}{E O} \text { and } \\
& \frac{C I}{I O}=\frac{C F}{F O}
\end{aligned}
$$

- 'CONCURRENCY THEOREM' proved.

