The Ceva's Theorem:

When three cevians of a triangle $A B C$ namely $A D, B E$ and $C F$ are concurrent at 0 , then,
$\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1$
The proof of this property is as follows:
Proof:

Draw AM \perp BC
$\triangle A B D$ and $\triangle A C D$ are having common heights in the altitude $A M$ drawn from A to the base $B C$.

The area of $\triangle A B D=1 / 2 \times A M \times B D$
The Area of $\triangle A C D=1 / 2 \times A M \times D C$
$\therefore \frac{\text { Areaof } \triangle A B D}{\text { Areaof } \triangle A C D}=\frac{1 / 2 \times \mathrm{AM} \times \mathrm{BD}}{1 / 2 \times \mathrm{AM} \times \mathrm{DC}}=\frac{B D}{D C}$
ie. $\frac{B D}{D C}=\frac{\triangle A B D}{\triangle A C D}$ [Where Δ denotes to the area of the triangle]

Similarly we can prove that $\frac{B D}{D C}=\frac{\Delta O B D}{\triangle O D C}$ [Where Δ denotes to the area of the triangle]
(1)\& $\rightarrow \frac{B D}{D C}=\frac{\triangle A B D-\triangle O B D}{\triangle A C D-\triangle O D C}\left[\right.$ Each ratio $=\frac{\text { difference between numerators }}{\text { difference between denominators }}$
ie. $\frac{B D}{D C}=\frac{\Delta O A B}{\triangle O A C}$
Similarly, it can be proved that $\frac{C E}{E A}=\frac{\Delta O B C}{\triangle O A B}$ - \qquad
And $\frac{A F}{F B}=\frac{\triangle O A C}{\triangle O B C}$
(3), 4) \& $5 \rightarrow \frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=\frac{\triangle O A B}{\triangle O A C} \times \frac{\Delta O B C}{\triangle O A B} \times \frac{\Delta O A C}{\triangle O B C}=1$

$$
\frac{B D}{D C} \times \frac{C E}{E A} \times \frac{A F}{F B}=1------------------------- \text { Proved }
$$

