Solution:

Here $\triangle \mathrm{ABC}$ is a special triangle with angles $\mathrm{A}, \mathrm{B} \& \mathrm{C}$ being $45^{\circ}, 105^{\circ} \& 30^{\circ}$ respectively. Only when the angles are in this combination, does the median from A , create $\angle B A D$ as an equivalent of $\angle C$. Let us now study whether there are other triangles (with different combination of angles), where the median AD from A makes $\angle B A D$ equal to $\angle C$. Let us take the following picture.

In this picture, ABC is a $\triangle \mathrm{AD}$ is its median from A . Let $\angle C=\angle B A D=x^{\circ}$.
Let $\angle C A D=y^{\circ}$
$\therefore \angle A D B=(x+y)^{\circ}$
Let $\mathrm{AB}=\mathrm{k} \& \mathrm{BD} \& \mathrm{DC}=\mathrm{a}$
Now $\triangle A B D, \frac{k}{\sin (x+y)}=\frac{a}{\sin (x)}$
$k=a\left[\frac{\operatorname{Sin}(x+y)}{\operatorname{Sin} x}\right]$
In $\triangle A B C$,
$\frac{k}{\operatorname{Sin} x}=\frac{2 a}{\operatorname{Sin}(x+y)}$

ie $k=2 a\left[\frac{\sin x}{\sin (x+y)}\right]$
(1) \& (2) $\rightarrow a\left[\frac{\sin (x+y)}{\sin x}\right]=2 a\left[\frac{\sin x}{\sin (x+y)}\right]$
ie $\operatorname{Sin}^{2}(x+y)=2 \operatorname{Sin}^{2} x$
ie $\operatorname{Sin}(x+y)=\sqrt{2} \operatorname{Sin} x$
If $(x+y)=45^{\circ}$,
$\operatorname{Sin} 45^{\circ}=\sqrt{2} \operatorname{Sin} x$
$\therefore \operatorname{Sin} x=\frac{1}{2}$
$x=30^{\circ}$
If $(x+y)=90^{\circ}$

Then, $\operatorname{Sin} 90^{\circ}=\sqrt{2} \operatorname{Sin} x$
$\operatorname{Sin} x=\frac{1}{\sqrt{2}}$
$x=45^{\circ}$
If $(x+y)=60^{\circ}$

$\operatorname{Sin} 60^{\circ}=\sqrt{2} \operatorname{Sin} x$

$$
\begin{aligned}
& \operatorname{Sin} x=\frac{\sqrt{3}}{2 \sqrt{2}}=0.61245 \\
& \operatorname{Sin}^{-1}(0.61245)=37.7^{\circ} \\
& \text { If } x=15^{\circ} \\
& \begin{aligned}
& \operatorname{Sin}(x+y)=\sqrt{2} \operatorname{Sin} 15^{\circ} \\
& \quad=\sqrt{2}(0.2588)=0.3659
\end{aligned} \\
& \operatorname{Sin}^{-1} 0.3659=21.46^{\circ} \\
& \therefore(x+y)=21.46^{\circ}
\end{aligned}
$$

Like the above ones,
We can find infinity number of Δs where the median AD gives $\angle B A D=\angle C$.

Dr. M. Raja Climax
Founder Chairman, CEOA

