Solution:

Here Δ ABC is a special triangle with angles A, B &C being 45°, 105° & 30° respectively. Only when the angles are in this combination, does the median from A, create $\angle BAD$ as an equivalent of $\angle C$. Let us now study whether there are other triangles (with different combination of angles), where the median AD from A makes $\angle BAD$ equal to $\angle C$. Let us take the following picture.

C

37.7

60

In this picture, ABC is a Δ . AD is its median from A. Let $\angle C = \angle BAD = x^{\circ}$. Let $\angle CAD = y^{\circ}$ $\therefore \angle ADB = (x + y)^{\circ}$ Let AB = k & BD & DC = aNow ΔABD , $\frac{k}{Sin(x+y)} = \frac{a}{Sin(x)}$ $k = a \left[\frac{Sin(x+y)}{Sinx} \right]$ ------(1) In $\triangle ABC$, 2a k $\frac{\pi}{Sinx} = \frac{1}{Sin(x+y)}$ ie $k = 2a \left[\frac{Sinx}{Sin(x+y)}\right]$ ------(2) (1) & (2) $\rightarrow a\left[\frac{Sin(x+y)}{Sinx}\right] = 2a\left[\frac{Sinx}{Sin(x+y)}\right]$ ie $Sin^2(x + y) = 2Sin^2x$ ie $Sin(x + y) = \sqrt{2}Sin x$ If $(x + y) = 45^{\circ}$, Sin 45° = $\sqrt{2}Sin x$ \therefore Sin $x = \frac{1}{2}$ $x = 30^{\circ}$ If $(x + y) = 90^{\circ}$ Then, Sin 90° = $\sqrt{2}Sin x$ $Sin \ x = \frac{1}{\sqrt{2}}$ $x = 45^{\circ}$ If $(x + y) = 60^{\circ}$

Sin 60° =
$$\sqrt{2}Sin x$$

 $Sin x = \frac{\sqrt{3}}{2\sqrt{2}} = 0.61245$
 $Sin^{-1}(0.61245) = 37.7^{\circ}$
 $If x = 15^{\circ}$
 $Sin(x + y) = \sqrt{2}Sin 15^{\circ}$
 $=\sqrt{2} (0.2588) = 0.3659$
 $Sin^{-1}0.3659 = 21.46^{\circ}$
 $\therefore (x + y) = 21.46^{\circ}$

Like the above ones, We can find infinity number of Δs where the median AD gives $\angle BAD = \angle C$.

> Dr. M. Raja Climax Founder Chairman, CEOA
