Solution

Method-1

Let the point of intersection of the semicircles with AB & AC, be D & E respectively. Let the point of intersection of the two semicircles be F.

Join BE. $\angle AEB = 90^{\circ}$ (angle inscribed in the semicircle)

Since, AB = BC, BE is therefore the perpendicular bisector of AC.

 \therefore E is the midpoint of AC. Similarly D is the midpoint of AB.

Join FE & AF

Both the semicircles will intersect at the midpoint of BC only.

If we assume that one semicircle intersects BC at F and the other semicircle intersects BC at F₁. Then we will get $\angle AFB = 90^{\circ}$ and also $\angle AF_1B = 90^{\circ}$.

 \therefore A F₁ and AF will always coincide and both the semicircles will intersect each other only at the midpoint of BC at F.

 $\therefore \Delta s$ ADE, DBF, CEF & DEF are all equilateral Δs with their side measurings 2.

 $\therefore \angle ADF = 120^{\circ}$

The area of the shaded portion of above diagram is

Sector DAF - $\triangle ADF$

$$=\frac{120}{360} \times \frac{22}{7} \times 2^2 - \Delta ADF -----1$$

Let AF & DE cut at O

 $\Delta ADF = \Delta ADO + \Delta DFO$

The angles of both the Δs are 30° , 60° , 90° Since AD = 2, OD = 1; and $AO = \sqrt{3}$ $\therefore \Delta ADF = 2\left(\frac{1 \times \sqrt{3}}{2} + \frac{1 \times \sqrt{3}}{2}\right) = \sqrt{3}$ $\therefore 1 \longrightarrow$ the shaded area $= \left(\frac{1}{3} \times \frac{22}{7} \times 2^2\right) - 2\sqrt{3}$ = 4.19 - 1.732 = 2.46We have found half of the given shaded area \therefore The area of the shaded portion $= 2 \times 2.46 = 4.92$ units

<u>Method -2</u>

In the above diagram two shaded areas are there.

Let us find out the area of one of them.

 Δ ADE is an equilateral Δ (Proved above).

One of the shade areas = sector EDA - \triangle EAD

$$= \left(\frac{60}{360} \times \pi \times 2^2\right) - \sqrt{3} \left(\frac{2^2}{4}\right)$$
$$= \left(\frac{1}{6} \times \frac{22}{7} \times 4\right) - \sqrt{3}$$
$$= \frac{44}{21} - \sqrt{3} = 2.095 - 1.732 = 0.363$$

There are two shaded areas.

 \therefore Half of the area of shaded portion given in the problem

$$= (2 \times 0.363) + \Delta ADE$$

$$=(0.726 + \sqrt{3})$$

= 0.726 + 1.732 = 2.458 = 2.46

 \therefore area of given shaded portion = 2 \times 2.46 = 4.92 units

- DR. M. RAJACLIMAX FOUNDER CHAIRMAN

