## Solution

## Method-1

Let the point of intersection of the semicircles with $A B$ \& $A C$, be $D \& E$ respectively. Let the point of intersection of the two semicircles be F.

Join BE. $\angle A E B=90^{\circ}$ (angle inscribed in the semicircle)
Since, $\mathrm{AB}=\mathrm{BC}, \mathrm{BE}$ is therefore the perpendicular bisector of AC .
$\therefore \mathrm{E}$ is the midpoint of AC . Similarly D is the midpoint of AB .

## Join FE \& AF

Both the semicircles will intersect at the midpoint of BC only.
If we assume that one semicircle intersects BC at F and the other semicircle intersects BC at $\mathrm{F}_{1}$. Then we will get $\angle A F B=90^{\circ}$ and also $\angle A F_{1} B=90^{\circ}$.
$\therefore \mathrm{A}_{1}$ and AF will always coincide and both the semicircles will intersect each other only at the midpoint of BC at F .
$\therefore \Delta \mathrm{s}$ ADE, $\mathrm{DBF}, \mathrm{CEF} \& \mathrm{DEF}$ are all equilateral $\Delta \mathrm{s}$ with their side measurings 2.
$\therefore \angle A D F=120^{\circ}$


The area of the shaded portion of above diagram is
Sector DAF - $\triangle$ ADF

$$
=\frac{120}{360} \times \frac{22}{7} \times 2^{2}-\Delta \mathrm{ADF}
$$

$\qquad$

Let AF \& DE cut at O
$\Delta \mathrm{ADF}=\Delta \mathrm{ADO}+\Delta D F O$

The angles of both the $\Delta \mathrm{s}$ are $30^{\circ}, 60^{\circ}, 90^{\circ}$
Since $A D=2$,
$\mathrm{OD}=1 ;$ and $\mathrm{AO}=\sqrt{3}$
$\therefore \triangle \mathrm{ADF}=2\left(\frac{1 \times \sqrt{3}}{2}+\frac{1 \times \sqrt{3}}{2}\right)=\sqrt{3}$
$\therefore 1 \longrightarrow$ the shaded area $=\left(\frac{1}{3} \times \frac{22}{7} \times 2^{2}\right)-2 \sqrt{3}$
$=4.19-1.732$
$=2.46$
We have found half of the given shaded area
$\therefore$ The area of the shaded portion $=2 \times 2.46=4.92$ units
***********************

## Method - 2

In the above diagram two shaded areas are there.
Let us find out the area of one of them.
$\Delta \mathrm{ADE}$ is an equilateral $\Delta$ (Proved above).
One of the shade areas $=$ sector EDA $-\triangle$ EAD
$=\left(\frac{60}{360} \times \pi \times 2^{2}\right)-\sqrt{3}\left(\frac{2^{2}}{4}\right)$
$=\left(\frac{1}{6} \times \frac{22}{7} \times 4\right)-\sqrt{3}$
$=\frac{44}{21}-\sqrt{3}=2.095-1.732=0.363$


There are two shaded areas.
$\therefore$ Half of the area of shaded portion given in the problem
$=(2 \times 0.363)+\Delta \mathrm{ADE}$
$=(0.726+\sqrt{3})$
$=0.726+1.732=2.458=2.46$
$\therefore$ area of given shaded portion $=2 \times 2.46=4.92$ units

